
NPS-CS-07-012

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited.

Prepared for: the National Science Foundation and the Defense Advanced Research Projects Agency

SecureCore Security Architecture:

Authority Mode and Emergency Management

by

Timothy E. Levin, Ganesha Bhaskara, Thuy D. Nguyen, Paul C.
Clark, Terry V. Benzel, Cynthia E. Irvine

16 October 2007

This page left intentionally blank

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Provost

This report was prepared for and funded by: NSF and DARPA.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Timothy E. Levin
Research Associate Professor

Reviewed by: Released by:

________________________ ______________________________
Peter J. Denning Dan C. Boger
Department of Computer Science Interim Associate Provost and
 Dean of Research

This page left intentionally blank

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 16 October 2007

3. REPORT TYPE AND DATES COVERED
 Research; 10/16/06 – 10/16/07

4. TITLE AND SUBTITLE

 SecureCore Security Architecture: Authority Mode and Emergency Management

5. FUNDING

6. AUTHOR(S)

Timothy E. Levin, Ganesha Bhaskara, Thuy D. Nguyen, Paul C. Clark, Terry V.
Benzel, Cynthia E. Irvine

 Grant numbers: CNS-0430566 and CNS-
0430598

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Center for Information Systems Security Studies and Research (NPS CISR)
1411 Cunningham Rd., Monterey, CA 93943

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 NPS-CS-07-012

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
 National Science Foundation, 4201 Wilson Blvd. 1175 N. ArlingtonVA22230
 DARPA, 3701 Fairfax Drive, Arlington, VA 22203

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

 Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)

 This document describes research in the SecureCore project. It describes results in the integration of SP Authority Mode hardware
security features into the SecureCore Software Security Architecture and the SecureCore Trusted Management Layer. The context of
integration is described including the target security policy, transient trust requirements and rationale. The design for protecting
secondary storage volumes, trusted channels, and emergency management is described. Design considerations and recommendations for
future work are also included.

14. SUBJECT TERMS

Operating systems: Security and protection: separation kernels, access controls, multilevel security
 Organization and design: hierarchical design
 Communications Management: network communication
 Process Management: multiprocessing/multiprogramming/multitasking

15. NUMBER OF
PAGES
 19

Hardware: Register-transfer-level-implementation: design 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT
 Unclassified

20. LIMITATION OF
 ABSTRACT
 UU

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std 239-18

This page left intentionally blank

NPS-CS-07-012

| SecureCore Technical Report

Trustworthy Commodity Computation and
Communication

SecureCore Security Architecture:
Authority Mode and Emergency Management

Timothy E. Levin, Ganesha Bhaskara, Thuy D. Nguyen, Paul C. Clark,
Terry V. Benzel, Cynthia E. Irvine

This page intentionally blank

i

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No.
CNS-0430566 and CNS-0430598 with support from DARPA ATO. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation or of DARPA ATO.

Author Affiliations

Naval Postgraduate School:
Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen, and Paul C. Clark
Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

USC Information Sciences Institute:
Terry V. Benzel and Ganesha Bhaskara
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, Ca 90292

ii

Forward

This document describes research in the SecureCore project. It is written for members of the SecureCore
project and others who understand the logic of pseudo-code and who are aware of basic SecureCore
design features, including SP Authority Mode.[5][9] The SecureCore Trusted Management Layer is
being developed in phases.[2] This document is targeted at Phase II, and with the assumption that there is
a single Third Party and one Emergency Partition. Generalizations to extend the concepts presented here,
e.g., to support multiple Third Parties, are the objectives of future work.

Typographic conventions are used to distinguish footnotes, citations, endnotes and pseudo-code.
Footnotes are marked with superscript Arabic numbers, the body of which should occur on or near the
same page as the mark. Citations to other publications are marked numerically within square brackets,
the bodies of which are collected at the end of the document. End notes are marked with superscript
lower-case Roman numbers, the bodies of which are collected in the Appendix. Pseudo-code is formatted
in courier font (like this).

iii

TABLE OF CONTENTS

I. INTRODUCTION...1

II. SECURITY POLICY ...3

III. TRANSIENT TRUST: REQUIREMENTS AND RATIONALE............................5

IV. DESIGN ..5

V. REFERENCES...13

APPENDIX A: NOTES ON DESIGN CONSIDERATIONS AND FUTURE WORK.14

INITIAL DISTRIBUTION LIST……………………………………………………optional

iv

This page intentionally blank

Authority Mode and Emergency Management

1

I. Introduction

During many crises, first-responder access to sensitive, restricted emergency information is
required. Lives can be saved and property protected during disasters if first responders can use
various medical and government records, such as the addresses and identities of handicapped and
susceptible people. Yet, currently, access to such information is restricted and is often not
available for first responders during emergencies because government and third party data
providers lack confidence in the ability of emergency IT systems to protect their data from
unauthorized access. To be practical, a solution to this problem must be usable “in the field,” and
provide dual-use functions on familiar equipment. The target platform on which the SecureCore
design fulfills these requirements is a handheld computer, referred to hereafter as the SC_Device.
SecureCore provides a mobile emergency-response capability that ensures third party
information protection during emergencies, providing a trusted foundation for more effective
crisis management activities. SecureCore is designed to enforce information security policies that
are:

 Demonstrably assured,
 Persistent during emergency as well as non-emergency periods, and
 Global across all participating organizations

The foundation of the SecureCore solution[6], consists of two major components: Authority
Mode SP hardware [5][9] and the Trusted Management Layer (TML). Authority Mode SP (i.e.,
SP, enhanced with Authority Mode) provides a basis for key management and protected
communications. The Trusted Management Layer (i.e., Least Privilege Separation Kernel or
LPSK, and SecureCore Security Services, or SCSS) partitions all platform resources and controls
interactions between the resources.[8]

SecureCore Module and Partition Terminology

Active partitions are those that the TML schedules to receive a time slice, whereas passive
partitions are never scheduled (e.g., may be used to hold data). The current generation of
SecureCore (including all planned phases) is a single CPU platform in which all active partitions
share the CPU, as controlled by the TML.

The Trusted Partition is an active partition that contains the SecureCore Operating System,
which provides support for high assurance trusted applications, including the Trusted Path
Application (TPA). The Emergency Partition is an active partition that is configured for the
secure handling of sensitive data during a declared emergency situation. All partitions other than
trusted and Emergency Partitions are called Normal Partitions. Normal, active partitions can
host a commodity operating system (OS) or specialized applications.

SP supports Authority Mode Trusted Software Modules (ATSMs) and User Mode Trusted
Software Module (UTSMs). SP does not limit which partition, process, or ring these modules are
allocated to, or how many of them are configured to run on a given platform.

Authority Mode and Emergency Management

2

A. Business Model
SC_Devices are used to provide transient access to emergency information. SC_Devices are
owned, maintained and operated by an organization we refer to as the Authority. The emergency
information is owned by third party organizations. In Phase II, the SC_Device will communicate
with a single Third Party, although the design is intended to be easily extendable to multiple
Third Parties in later phases.
In many cases, there are financial, regulatory and political hurdles to sharing information both
during an emergency and otherwise. The Authority establishes an agreement (e.g., MOU or
SLA) with the Third Party regarding their various expected behaviors, such as the precise
information sharing policies and level of protection that will be afforded to shared information.

The Authority and the Third Party may agree for the SC_Device to host one or more Third Party
trusted applications in the Trusted Partition. The level of trustworthiness of these applications
and the amount of trust that the Third Party allocates to them are outside of the scope of this
document, but the security of the SC_Device does depend on those factors.

The Third Parties rely on the Authority to correctly configure the SC_Devices. The Third Parties
also rely on the Authority to declare the start and end of the emergency in an appropriate and
secure manner.

B. Operational Model

The Authority and individual Third Parties exchange symmetric-cryptography keying material to
support communication channels with appropriate levels of confidentiality, integrity,
authentication, and authorization. Additionally, SecureCore supports the following operations
and features:

 The Authority sets up SC_Devices at a device-configuration Depot, to include installation
of: cryptographic keys, Third Party programs and pre-distributed Third Party emergency
data.

 The Authority manages the global emergency state (i.e., it is either on or off)i, including
secure communication of changes in the emergency state to SC_Devices and Third
Parties.

 Authorized users can temporarily access certain sensitive information during
emergencies, which they cannot access under normal conditions.

 The SC_Device manages secure communication of emergency data between SC_Devices
in the field and Third Parties.

 The User, the Authority or the Third Party can revoke trust relationships between them
during operation.

 SCOS provides a trusted application environment for high integrity operations such as
secure signing of documents and secure session management.

See Appendix A for a description of anticipated extensions to these features.

Authority Mode and Emergency Management

3

II. Security Policy
A multilevel security (MLS) policy is enforced on the SC_Device, and is implemented by using
mandatory access control labels. Each partition on the SC_Device is assigned a label or in the
case of a Trusted Partition, a label range. This policy further allows the usual MLS restrictions
on access to data to be bypassed during an emergency, within predefined limits:

 An authorized user of the SC_Device shall not be allowed to access the emergency data
except during an emergency.

 The emergency data shall not be accessible by remotely connected users, other than those
acting as the Authority or the authorized Third Party. Third Parties may remotely access
their own emergency data during or outside of an emergency, e.g., to be able to maintain
the platform-resident emergency data.

The agreement between the Authority and a Third Party will establish the label for the Third
Party’s Normal Partition (if there is such a partition) and for its trusted applications in the
Trusted Partition, if any, and the label for the Third Party’s Emergency Partition(s).
The communication of changes of emergency state to SC_Devices, and the local representation
of emergency state on the devices, are protected with high integrity to ensure coherent
emergency response.

SecureCore provides the capability for emergency state changes to be confidential, since
different sorts of emergencies can require different forms of confidentiality. For example,
consider these scenarios:

 A fire truck siren is meant to be public to ensure traffic safety and rapid response. In the
announcement of an impending tsunami, it is critical that as many people as possible
know about the emergency.

 There is no reason for the public to know the nature of the emergency when a fire truck
drives by.

 Confidentiality of emergency state can shield first responders from social vultures (e.g.,
“ambulance chasers”) or malicious parties who could intentionally interfere with
emergency response.

 Military emergencies can involve highly sensitive national security information requiring
strict confidentiality, such the wreckage from a “balloon-launched classified government
project.”[3]

 The network-based announcement of an emergency may include more than just the start
of the emergency, depending on how the protocol is designed, and what the end users
need to know.ii

Thus, in some configurations it would be necessary for the emergency state have both high
integrity as well as non-zero confidentiality.
Consistency of local and global emergency state is important, although the natural variability of
mobile device connectivity limits the degree of consistency that is achievable. When an
SC_Device loses connectivity with the Authority during an emergency, it is allowable for the
user to continue to have access to the device’s local emergency information, as limited by a

Authority Mode and Emergency Management

4

configurable timeout value, until connectivity is reestablished and the SC_Device can re-
synchronize with the global emergency state.

The Authority is proxy for the Third Parties in terms of the security policy. No attempt is made
to protect Third Party communications, data or code from the Authority, given that the Authority
installs all cryptographic keys and trusted software.

A. Application Policies

Object-specific handling instructions (e.g., “application policies”) may be cryptographically
bound to certain objects, in addition to the objects’ MLS labels that the TML may provide.
These instructions can indicate restrictions on access to the objects, over and above the
restrictions denoted by the MLS labels. The instructions can be interpreted by an A-TSM or
UTSM, which would also be responsible for managing the objects in a manner consistent with
the instructions. Articulation of feasible application policies and suitable architectural
requirements to ensure the sufficiency of the trusted programs to enforce the instructions are
outside of the scope of this document.

B. Cryptographic Policy

To support the MLS policy, the Crypto Policy places requirements on the use of cryptographic
keys and algorithms relative to the security level of data, its processing, or its communication.

 The SC_Device must ensure that the decryption methods for inbound data are
commensurate with the destination partition security level, even if the OS on the remote
(source of data) platform is subverted (e.g., to prevent an UNCLASS partition from
receiving decrypted data from classified source).

 The SC_Device must ensure that the encryption methods for outbound data are
commensurate with the source partition security level, even if that partition’s (untrusted)
OS is malicious.

Cryptographic keying material is handled in different ways:

 The Authority shares a separate secret with each device, which is installed into the
hardware at the Depot (i.e., the SP Device Root Key[5] or DRK). Third Parties may not
access the DRK.

 The Authority shares a separate secret with each Third Party, which may not be shared
with any of the SC_Devices.

 Third Parties may have a secret installed in TML-protected memory on certain
SC_Devices, to support secure communication with the SC_Devices.

C. Devices

The MLS characteristics of SC_Device physical I/O devices can be managed in several different
ways:

 Single level – I/O device has a fixed security level
 Single Level at a Time (SLAT) – I/O device security level varies over time, within a

fixed range

Authority Mode and Emergency Management

5

 Multilevel – the I/O device has a range and IP packets are explicit or implicitly-labeled
within that range

If partitions with different security levels are configured to utilize the same physical I/O device,
then that device will need to change levels to accommodate the currently scheduled partition
(viz., SLAT), or it will need to be multilevel.
The SC_Device can be configured so that security levels are bound to certain remote IP
addresses. When network data is sent or received by a partition, the SC_Device must ensure that
the remote-address level matches the partition level and matches or is within the range of the
physical device.iii

III. Transient Trust: Requirements and Rationale
The TML creates and manages the Emergency Partition to provide users with emergency access
to sensitive data. The user of the SC_Device may only access emergency data during
emergencies, as described next.
Emergency data is kept in Emergency Partitions. A user in a Normal Partition can never access
data in an Emergency Partition. Users can enter the Emergency Partition only during an
emergency. Access by users to Emergency Partitions is protected by the TML, which has
knowledge of the global emergency state, and the trusted path application, which is the
gatekeeper to partitions. Processes in the Emergency Partition are not allowed to write to
resources outside of that partition, except for writing to the Third Party via a trusted network
channel.
Users can hop back and forth between emergency, trusted, and Normal Partitions during an
emergency. Once an emergency is over, the TML and TPA make the Emergency Partition
inaccessible to the user of the SC_Device.

The TML can be configured so that after the emergency, it copies a snapshot of emergency data
to a static protected partition (e.g., for audit of generated or modified data), or this data can be
transmitted to the Third Party for update of their databases.iv
Third parties can securely transmit data to the SC_device for storage in the Emergency Partition
during or outside of an emergency. A daemon process in the Emergency Partition manages the
reception of emergency data on the SC_device.v

IV. Design

Access to sensitive information during an emergency is based on the TML, which is comprised
of the Least Privilege Separation Kernel (LPSK) and the SecureCore Security Services (SCSS)
components. The LPSK exports various resource abstractions, organizes them into partitions,
and enforces a security policy regarding information flow between partitions. The SCSS
provides OS-support services and semantics associated with the LPSK-exported resources.

A. Subjects

In Phase II, there will be one process per partition. A multi-program process can be structured to
utilize the several rings (i.e., hardware privilege levels) available outside of the TML, e.g., one
program per ring. Thus, a “subject” is a process-ring pair.

Authority Mode and Emergency Management

6

B. Objects

The TML exports object abstractions: memory segments, and synchronization primitives (i.e.,
eventcounts and sequencers[10]); and two abstractions of object groups: disk volumes, and
segment volumes. The TML labels all exported objects. The guest OS of one partition can mount
the disk volume of another partition, as allowed by the TML security policy, which enables
sharing of persistent data between the partitions. However, if the guest OS creates its own object
abstractions within a volume, the TML cannot help enforce OS restrictions (e.g., for applying the
principle of least privilege) over and above the restrictions of the TML security policy.

C. Segments and Segment Volumes

Segments are made available by the TML via a SecureCore-specific interface. Segments have the
advantage that they can be individually protected by LPSK (as opposed to OS-created objects
inside of a volume). Segments have a global name space that is subject to MLS restrictions. For
example, the segment names and certain other static metadata may be labeled separately from the
segment itself.[7] User-accessible segments are organized in exported segment volumes
managed by the LPSK. Similarly, the TML maintains one or more internal segment volumes for
its own use, (although its internal objects may not be labeled).

The segment volume structures (i.e., all of the segments and related metadata that comprise a
segment volume) are encrypted using sp_secure_store from within an ATSM module of the
TML. A general description of how TML secures segment volumes is provided in the following
example (sealing procedures and storage procedures), and in Figure 11.

1. Sealing Procedures
Sealing procedures are used to generate and store cryptographic signatures of segment volumes.
These volumes can be signed at various intervals or in response to different events such as a
request to shut down the system.vi For this description, it is assumed that there is one exported
and one internal volume (called evol and ivol), but extension to support multiple segment
volumes should be straightforward.

TML calls an internal ATSM module with volume check-sum values it has generated to generate a
seal. _atsm_seal_vols moves each check-sum to a register (hw_move is an abstraction of a
typical assembly operator) and then calls sp_gr_to_srh to generate and store the seal (shown as
V-hash in Figure 1) in the SRH register of Authority Mode SP.

_atsm_seal_vols (ivol-hash, evol-hash: word) = (
 hw_move(R1, evol-chksum)
 hw_move(R2, ivol-chksum)
 sp_gr_to_srh(R1, R2))

The TML design process will establish the details of how TML generates volume checksums.2

1 Regarding pseudo-code: each function is prefixed to indicate the name of the component in which it
resides. Internal functions of a component, which are not available at its interface, are further prefixed
with an underscore (“_”). For example, SP interface functions are prefaced with “sp_”.
2 The volume checksums need not be cryptographically sealed since SRH protects them.

Authority Mode and Emergency Management

7

2. Storage Procedures
Storage procedures utilize the cryptographic transformation of sp_secure_store to efficiently
encrypt data before it is written to disk. Encryption of user data can be handled in different
ways. For example, the tml_disk_flush function can be exported to applications that are
segment aware, or the TML could coerce any calls to write to the disk to use this logic.
To encrypt a segment on disk, applications (or modules within TML) call tml_secure_flush
with the handle of the segment. tml_disk_flush first ensures that all of the “cache lines” of the
segment are marked for encryption by calling _tml_mark_secure, and then calls
lpsk_flush2disk to write the encrypted segment to disk.

tml_disk_flush(user_seg: evol_seg_handle) = (
 for i = 1 .. Length(user_seg) do
 if not user_seg.i.SecureData then // secure data tag bit
 _tml_mark_secure(user_seg.i, user_seg, i)
 lpsk_flush2disk(user_seg)

Figure 1. Segment Volume Protection

Figure 1. SecureCore Volume Protection

Authority Mode and Emergency Management

8

_tml_mark_secure is handed a word of data and a memory destination (segment and offset). It
moves the word into a general purpose register and then calls _atsm_secure_store to mark the
cache line for encryption.

_tml_mark_secure(w: word, dest_seg: ivol_seg_handle, offset: word) = (
 hw_move(R2, w)
 _atsm_secure_store(dest_seg, offset, R2)) // w encr with DRK

The internal procedure _atsm_secure_store calls sp_secure_store to mark the cache line for
encryption:

_atsm_secure_store(dest_seg, offset, R2) = (
 sp_secure_store(dest_seg, offset, R2))

lpsk_flush2disk pushes to memory the elements of the segment that are in the processor
cache, which causes SP to encrypt them, and then writes the entire segment to the disk. If the
operation is called from within an ATSM, a DMA disk device must be used to copy the
encrypted segment directly from memory onto the disk,vii because using the processor to write to
disk would cause the memory to be decrypted first - i.e., by pulling it back into the processor in
order to write to the disk. If not in a TSM, then programmed I/O or DMA I/O can be used to
write to the disk.

lpsk_flush2disk(user_seg) = (
 for i = 1 .. Length(user_seg) do
 x86_clflush(i) //flush all cache lines of segment
 _dma_device_write(user_seg))

D. Trusted Channels

Trusted channels are cryptographically-secured communication paths between a partition or a
trusted component of the SC_Device and a remote entity such as the Authority or Third Party.
Trusted channel set up is accomplished during initialization, at least during Phase II, to keep the
runtime system simple. The channel keys and other sensitive channel parameters are stored in a
TML database and are not available to applications; others parameters are made known to
applications as necessary (e.g., the device handle). The TML encrypts the database with a key
derived from the DRK. TML can recreate this key using its ATSM functions, so the key does
not need to be stored in persistent memory. TML makes logical devices for accessing trusted
channels available to partition subjects via a virtual BIOS interface. This mechanism can be
made more efficient in the emergency partition, since the SCOS does not necessarily need to be
presented with a legacy BIOS interface.

Activity on a trusted channel is initiated by outgoing communication from the device, during
which the channel is mutually authenticated.

Table 1 shows the cryptographic keysviii for security functions (attestation, authentication,
communication) between Authority, Third Party and the SC_Device. These keys are used to
generate related session keys, etc.

Authority Mode and Emergency Management

9

For example, a trusted component of the SC_Device may establish a trusted channel with the
Authority. The channel security is based on a session key generated with the sp_derive
instruction from a non-secret seed that is shared with the Authority; since the DRK utilized by
sp_derive is secret, the generated key will be secret.

Table 1. Authentication and Communication Security

Party 1 Party 2 Key

Authority SC_Device
Trusted Component

DRK

Authority Third Party Keys agreed to in SLA/MOU

Third Party SC_Device
Normal Partition

Keys provided by Third Party
and installed at Depot

E. Hardware Support for Emergency State Management

The Authority maintains the global emergency state of the network and communicates state
changes to SC_Devices. Trusted components of SecureCore (such as the Emergency Manager,
“e-manager,” and TPAix in Figure 2) receive, store, and respond to emergency status updates.
The Authority Mode SP processor is extended to enhance the assurance of emergency state
management with:

 Two new instructions: sp_update_emergency and sp_get_emergency

 A local emergency-state counter: e_counter

 An emergency-state bit that is the local version of emergency state: e_state

The Authority keeps a record of the sc_device_id and DRK for each SC_Device. It also
maintains the emergency state-change number.
1. Starting an Emergency State Change
To announce a change to the emergency state, the Authority first updates its own information (in
this case, the start of an emergency):

emergency_counter = emergency_counter + 1

emergency_state = 1 // emergency is “on”

Then the Authority generates an emergency message for one or more SC_Devices,x and sends
them each over a trusted channel (see Section IV.D). The message contains two parts, a payload
and the hash of the payload.
The payload contains the new emergency state and the global state-change number; it is
encrypted with each SC_Device’s DRK (in this case, device number n):

payload = _authority_encrypt(e-state, e-counter, DRKn)

Authority Mode and Emergency Management

10

The crypto-hash3 of the encrypted payload is also based on the target SC_device’s DRK:
hash = _authority_keyed_hash(payload, DRKn)

The message is the concatenation of the payload and the hash:
message = _authority_concatenate(payload, hash)

An SCSS trusted channel manager on the SC_Device receives the message, and sends it to the e-
manager. The e-manager enters A-CEM and invokes sp_update_emergency(message) to
update the emergency state.
2. New SP Processing
SP processes sp_update_emergency with the following actions (see also Table 2), which
appear from the interface to the hardware to be atomic (internal logical functions that are not
available at the SP interface are prefaced with an underbar “_”). Before processing, SP ensures
that the calling program has sufficient privilege.

3 This hash function is distinct from the function used by sp_derive, to help prevent replay attacks (see
Section IV.E.4).

Figure 2. Local Emergency-state Management

Authority Mode and Emergency Management

11

sp_update_emergency(message) =
 tmp := _sp_check_hash(DRK, message.payload, message.hash)
 if tmp = “success” then
 tmp := _sp_decrypt(DRK, message.payload, tmp_values)

 if tmp = “success” then
 if tmp_values.counter > e_counter then
 e_counter := tmp_values.counter
 e-state := tmp_values.state
 else tmp = “bad_ecounter”
return (tmp) // “success” or a specific error

sp_update_emergency validates the hash3 against the payload using the SP_Device’s DRK,
and then decrypts the payload with the DRK. It also checks that the new counter value is greater
than the previous value, to ensure that SP has not been requested to perform duplicate updates. If
these operations are successful, SP writes the decrypted payload state to the hardware e-state
register.

Table 2. Emergency HW Instructions

3. Responding to State Change
If sp_update_emergency was successful, the e-manager sends an acknowledgement to the
Authority and calls sp_get_emergency:

sp_get_emergency = return (e-state)
The e-manager takes appropriate action depending on whether an emergency has started or
stopped. In the former case, it will signal to TPA to announce an emergency to the user and
make the Emergency Partition available; or it will initiate the termination of an existing
emergency.
4. Emergency State Threats and Security Analysis
The correct management of emergencies depends on the correct interpretation of the global
emergency state by SC_Devices. Threats to this correctness include corrupted, impersonated or
disrupted communication of the emergency message, and corrupted, impersonated or disrupted
processing or storage of the emergency state on the local SC_Device. Additionally, in situations
where confidentiality of emergency state changes is required, eavesdropping of emergency
communication, storage, and processing is a concern.

Instruction Arguments Exceptions
sp_update_emergency subject: implicit

message: string
Subject lacks sufficient privilege
Message has wrong format
The message counter value is too low
The message hash does not match

sp_get_emergency subject: implicit
GR1: word

The calling subject shown is an implicit parameter, which indicates the security attributes of the
program or module that invokes the instruction.
Privileged domains are those less than ring 0 for VTx; less than ring 1 otherwise.

Authority Mode and Emergency Management

12

COMMUNICATIONS INTEGRITY
It does not appear that the uniqueness of the emergency message can be ensured in a simple one-
way communication from the Authority to the SP hardware, as it would be difficult for the
SC_Device to distinguish previous authentic messages that it had missed from authentic current
messages.
The use of the trusted channel ensures that the emergency message is from a trusted source and
is current. The emergency hash and counter provide additional defense-in-depth that the message
is authentic, current, and unmodified during communication.

COMMUNICATIONS AVAILABILITY
Availability is problematic, as we cannot guarantee connectivity of the SC_Devices, but the
SC_Devices are required to use best effort to stay synchronized with the Authority.

An SC_Device may be offline occasionally, for example during extreme emergency conditions,
but the proposed emergency policy allows the user to continue to have access to emergency data
if the SC_Device loses connectivity during an emergency.xi During the offline period, it is
conceivable the emergency could have cycled on and off one or more times. The individual
SC_Device does not need to be concerned with offline state changes; only that it should re-
synchronize its emergency state before any further user activity is allowed. Upon reconnection
to the network, before any user activities are allowed, the TML must request an emergency state
packet from the Authority in order to synchronize with the current emergency state.

STORAGE AND PROCESSING INTEGRITY
On the SC_Device, emergency state is managed exclusively by trusted components. State
changes are validated and stored in hardware, and access to the hardware state is restricted to
ATSMs. The hardware support enhances SecureCore protection against attacks on the storage
and processing of emergency state and reduces the amount of software that needs to be trusted
for emergency state management.

One potential threat is that corrupted trusted software (while the SecureCore security
architecture provides high assurance self-protection, this analysis is provided to support defense-
in-depth) on the SC_Device could sign messages with the DRK by using sp_derive, and then
spoof the SC_Device into believing the wrong emergency status. However, protection against
these counterfeit emergency messages is accomplished by the use of a different emergency-
signing algorithmxii than that used by sp_derive (e.g., the signatures could be a different
length).
EMERGENCY CONFIDENTIALITY
Confidentiality is ensured through several means: the use of a trusted channel for
communications, the use of trusted components for management of emergency state , and SP
hardware support for hiding the content of emergency messages during processing and storage
(which even hides the value of upcoming state changes from the trusted components until after
the hardware state change has occurred).

Authority Mode and Emergency Management

13

V. References
[1] Boneh, D. and Franklin, M. “Identity based encryption from the Weil pairing.” SIAM J. of

Computing, Vol. 32, No. 3, pp. 586-615, 2003.

[2] Clark, Paul C., Irvine, Cynthia E., Levin, Timothy E., Nguyen, Thuy D., Vidas, Timothy M.,
SecureCore Software Architecture: Phased Implementation, NPS-CS-0n-nnn, Naval Postgraduate
School, to appear circa 2007.

[3] Davis, R. Government Records - Results of a Search for Records Concerning the 1947 Crash Near
Roswell, New Mexico. GAO/NSIAD-95-187. Director, National Security Analysis. July 1995
http://www.fas.org/sgp/othergov/roswell.html (PDF Version) – last accessed October 3, 2007.

[4] Denning, D. “A Lattice Model of Secure Information Flow.” Communications of the A.C.M. Vol. 19
No. 5. pp. 236-243. 1976

[5] Dwoskin, J. and Lee, R. “Hardware-rooted Trust for Secure Key Management and Transient Trust.”
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.

[6] Irvine, C. Collaborative Research: SecureCore for Trustworthy Commodity Computing and
Communications. 31 Mar. 2005. https://www.fastlane.nsf.gov/servlet/showaward?award=0430566

[7] Irvine, C. “A Multilevel File System for High Assurance.” Proceeding of the IEEE Symposium on
Security and Privacy. IEEE Computer Society Press. pp. 78-87. Oakland, CA May-95.

[8] Levin, T., Irvine, C., Weissman, C., Nguyen, T., "Analysis of Three Multilevel Security
Architectures" to appear in proceedings of the Computer Security Architecture Workshop, ACM.
November 2, 2007, Fairfax, Virginia, USA. http://www.cisr.nps.navy.mil/pub_papers.html

[9] Levin, T. SP Summary (with Authority Mode). SecureCore Project Working Note. September 18,
2007.

[10] Reed, D. and Kanodia, R. “Synchronization with Eventcounts and Sequencers.” Communications of
the A.C.M. Vol. 22 pp. 115-123, 1979.

Authority Mode and Emergency Management

14

Appendix A: Notes on Design Considerations and Future Work
Labeling of the segments in the internal volumes can be per-object, or the volumes can be
partitioned per access class with a root for each class. The latter approach would save space but
would dis-allow “multilevel directories” containing objects at different levels (all dominating
their directory level), but soft links can give the appearance of MLS.[7]

A. SP

Consider whether it would make sense for sp_secure_store, when invoked by a UTSM (vice
Authority Mode), to be based on the UMK rather than DMK, so that the user’s data could be portable
to another of his or her machines – assuming sp_secure _store is used for persistent storage.

It may be possible to use DRK as private key in a public key encryption algorithm,[1] if it is
paired with a public key, e.g., accessible via the Authority web site. In this usage, DRK would be
limited to “signing” 2-word values by ATSMs.

B. Considerations cited in the text

i Emergency state is binary in Phase II, but can be expanded, for example, to a scale of
emergency conditions in the future. Also, in Phase II, emergency partitions may exist at different
sensitivity levels for different Third Parties; and groups of Third Parties may share an
Emergency Partition if they so choose.
ii Support for information-rich emergency announcements is left for future work.
iii Read down and write up across the network may be considered.
iv In later phases of SecureCore, multiple third parties will be supported. Third parties who trust
each other can be co-located in the same emergency partition; however, third parties who trust no
other Third Party will be isolated in their own emergency partition – these operational
arrangements follow from the observation that if information from two equivalence classes is
allowed to intermingle, then they are in effect a single equivalence class (e.g., see Denning’s
discussion of irredundant classes[4]).
v We will consider providing additional support for receiving information from the Third Party,
whereby the information can be received by a trusted application (in the trusted partition) that
then places the data in the emergency partition.
vi Recovery of segments and volumes, e.g., in the event of an unexpected shutdown, will be
addressed in the future. For example, segments may have their own seals. The volume seal may
be a function of the seals of the segments on the volume. In order to avoid re-sealing the volume
on every segment change, the volume seal could be allowed to be out of date with respect to
some (small) set of segments, e.g., if the TML stores the old version of those segments that were
sealed since the previous volume seal. The TML could recover to a secure state comprising the
sealed volume plus a set of sealed segments. Another option is to avoid volume seals and just
seal the segments.

Authority Mode and Emergency Management

15

vii As an alternative to using CLFLUSH and a DMA disk device to encrypt persistent storage, a
new SP instruction could provide “secure write” capability, so that the kernel could write
encrypted data to memory or devices.
viii A PKI could be used for distribution of keys for normal- and emergency-partition channel
trusted channels – an engineering consideration.
ix Functions of the e-manager and TPA might be provided by multiple modules in the future.
x Broadcast of changes in emergency state to groups of SC_Devices, and peer-to-peer shuttling
of this information, may be investigated in the future.
xi We will consider configuration options to modify SC_Device’s response to (its own perception
of) lack of connectivity to the Authority. For example, a given Authority or Third Party may
desire the SC_Device to discontinue an emergency after it has been disconnected for a certain
period.
xii An alternative to using a different signing algorithm for emergency processing than the one
used for sp_derive is to add a dedicated, persistent-memory SP register to hold an emergency
integrity-checking key. This key would be inaccessible to software through any HW instruction;
rather, the sp_update_emergency instruction would implicitly use this key for validation of the
emergency message. The tradeoff here is the complexity of an additional dedicated register,
versus the complexity of an additional signing algorithm.

This page left intentionally blank

 INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 1
Ft. Belvoir, VA

2. Dudley Knox Library 1

Naval Postgraduate School
Monterey, CA

3. Karl Levitt 1

National Science Foundation
4201 Wilson Blvd.
Arlington, VA

4. Lee Badger 1

DARPA
Arlington, VA

5. Timothy E. Levin 2

Naval Postgraduate School
Monterey, CA

6. Ganesha Bhaskara 1
Information Sciences Institute
University of Southern California
Marina del Rey, Ca

7. Thuy D. Nguyen 2

Naval Postgraduate School
Monterey, CA

8. Paul C. Clark 2
Naval Postgraduate School
Monterey, CA

9. Terry V. Benzel 1

Information Sciences Institute
University of Southern California
Marina del Rey, Ca

10. Cynthia E. Irvine 2

Naval Postgraduate School
Monterey, CA

This page left intentionally blank

	COVER.pdf
	blank copy.pdf
	SIGNPAGE.pdf
	blank copy 1.pdf
	298.pdf
	blank copy 2.pdf
	Authority_Mode_Integration_Notes_071019.pdf
	blank copy 3.pdf
	DISTPG.pdf
	blank.pdf

